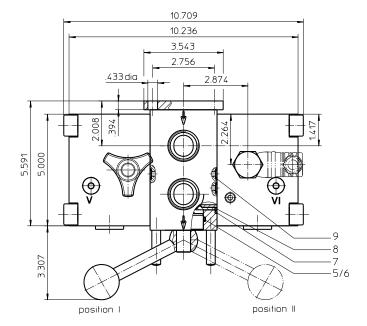
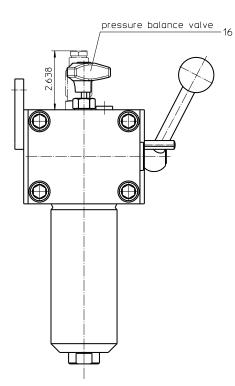
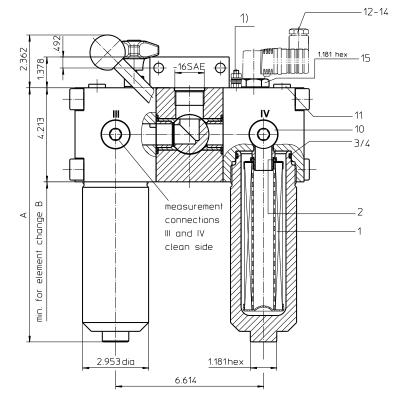
Sheet No. 2530 L

Series EHD 61-151 4568 PSI


Dimensions:


type	EHD 61	EHD 91	EHD 151				
connection	G 1						
A	8.81	11.37	15.70				
В	8.26	13.38	17.71				
weight lbs.	68	75	84				
volume tank	2x .06 Gal.	2x .10 Gal.	2x .15 Gal.				


1) Connection for the potential equalization, only for application in the explosive area.

Connections V and VI to be used for pressure relief and air bleeding respective filter side.

Position I: left filter side in operation Position II: right filter side in operation

Dimensions: inches Designs and performance values are subject to change.

Pressure Filter, change over Series EHD 61-151 4568 PSI

Description:

Stainless steel-pressure filters change over series EHD 61-151 are suitable for operating pressure up to 4568 PSI. The pressure peaks are absorbed by a sufficient margin of safety.

Duplex filters can be serviced without interruption of operation. The upper part has a three-way-change-over valve which allows to change-over the flow from the dirty filter-side to the clean filter-side without interrupting the operation. The change-over procedure does not lead to a cross sectional contraction. Prior to the change-over procedure a built-in pressure balance valve equalizes the housing pressure. After change-over the pressure balance valve is to be closed again. The closed filter-side has to be air-bled by vent V respectively by vent VI. Then change filter element. After screw in the filter bowl the pressure balance has to be opened shortly and the just serviced filter-side has to be air-bled. Filter elements are available down to a filter fineness of 5 µm_(C).

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements are available with a pressure difference resistance up to ∆p 2320 PSI and a rupture strength up to ∆p 3625 PSI.

The internal valves are integrated into the centering pivot for the filter element.

After reaching the opening pressure the by-pass valve causes that an unfiltered partial flow passes the filter. The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

Eaton filter are suitable for all petroleum based fluids, HWemulsions, most synthetic hydraulic fluids and lubrication oils.

1. Type index:

1 series:

1.1. Complete filter: (ordering example)

	-	10VG.						-				
1	2	3	4	5	6	7	8	9	10	11	12	13

- ÉHD = stainless steel-pressure filter, change over
- 2 nominal size: 61, 91, 151
- 3 | filter-material and filter-fineness: 80G, 40G, 25G stainless steel wire mesh
 - 25VG, 16VG, 10VG, 6VG, 3VG microglass
- 4 filter element collapse rating: = Ap 435 PSI 30
 - HR = Δp 2320 PSI (rupture strength Δp 3625 PSI)
- 5 filter element design:
 - = single-end open Е
- 6 sealing material:
 - = Nitrile (NBR) Ρ v = Viton (FPM)
- 7 filter element specification:
 - = standard
 - VA = stainless steel
- 8 process connection:
- UG = thread connection
- 9 process connection size:
- 5 = -16 SAE
- 10 filter housing specification:
 - = stainless steel VA
- 11 specification pressure vessel:
 - = standard (PED 2014/68/EU) IS20 = ASME VIII Div.1 with ASME equivalent material, see sheet-no. 55217 (max. operating pressure 2635 PSI)
- 12 internal valve:
 - = without
 - S1 = with by-pass valve Δp 51 PSI
 - S2 = with by-pass valve ∆p 102 PSI
 - R = reversing valve, Q ≤ 18.50 GPM
- 13 clogging indicator or clogging sensor:
- - = without
 - AOR = visual, see sheet-no. 1606 AOC = visual, see sheet-no. 1606
 - AE = visual-electric, see sheet-no. 1615
 - VS5 = electronic, see sheet-no. 1619

To add an indicator to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E.	90.	10VG.	HR.	Ε.	Ρ.	VA	
1	2	3	4	5	6	7	
1 ser							

- 01E. = filter element according to company standard
- 2 nominal size: 60, 90, 150
- 3 7 see type index-complete filter

Accessories:

gauge port- and bleeder connection, see sheet-no. 1650

Technical data:

operating temperature: +14°F to +212°F operating medium mineral oil, other media on request max. operating pressure: 4568 PSI 6532 PSI test pressure: 3625 PSI max. operating pressure at IS20: test pressure at IS20: 4713 PSI process connection: thread connection EN10088-1.4571 (316 Ti according to AISI) housing material: sealing material: Nitrile (NBR) or Viton (FPM), other materials on request installation position: vertical air bleeding and measure connections dirt side: BSPP 1/4 measure connections clean side: BSPP 3/4

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

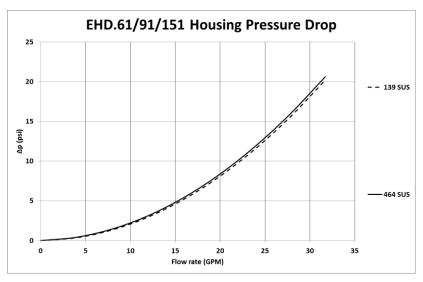
Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

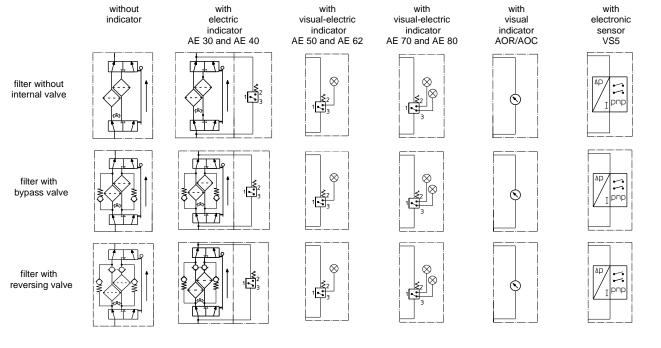
 Δp assembly = Δp housing + Δp element Δp housing = (see $\Delta p = f(Q)$ - characteristics)

 $\Delta p \text{ element (PSI)} = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v(SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$

For ease of calculation our Filter Selection tool is available online at www.eaton.com/hydraulic-filter-evaluation


Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.


EHD			VG	G				
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G
61	6.748	4.685	2.999	2.577	1.760	0.2002	0.1868	0.1280
91	4.059	2.818	1.804	1.550	1.059	0.1210	0.1130	0.0774
151	2.422	1.681	1.076	0.925	0.632	0.0723	0.0675	0.0462

$\Delta p = f(Q) - characteristics according to ISO 3968$

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0.876 kg/dm³. The pressure drop changes proportionally to the density.

Symbols:

Spare parts:

item qty.		designation		dimension		article-no.					
		_	EHD 61	EHD 91	EHD 151						
1	2	filter element	01E.60	01E.90	01E.150						
2	2	O-ring		22 x 3,5	304341 (NBR)	304392 (FPM)					
3	2	O-ring		56 x 3		305072 (NBR)	305322 (FPM)				
4	2	support ring		63 x 2,6 x 1			309				
5	3	O-ring		45 x 3		304991 (NBR)	304997 (FPM)				
6	2	support ring		49,7 x 2,4 x 1			709				
7	4	O-ring		38 x 3		304340 (NBR)	317013 (FPM)				
8	4	O-ring		28 x 3		316778 (NBR)	318366 (FPM)				
9	4	O-ring		8 x 2		310004 (NBR)	316530 (FPM)				
10	2	screw plug		34 BSPP			815				
11	2	screw plug		1/4 BSPP			306968				
12	1	clogging indicator, visual		AOR or AOC			t-no. 1606				
13	1	clogging indicator, visual-electric		AE		AE		AE see sheet-no. 1615		t-no. 1615	
14	1	clogging sensor, electronic		VS5			t-no. 1619				
15	1	screw plug		20913-4			20913-4		20913-4 31444		442
16	1	pressure balance valve		3/8"			310316				

item 15 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

- ISO 2941 Verification of collapse/burst resistance ISO 2942 Verification of fabrication integrity
- ISO 2943 Verification of material compatibility with fluids
- ISO 3723 Method for end load test
- ISO 3724 Verification of flow fatigue characteristics
- ISO 3968 Evaluation of pressure drop versus flow characteristics
- ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East Auf der Heide 2

53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

No. 7, Lane 280, Linhong Road

Greater China

Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

Asia-Pacific

100G Pasir Panjang Road #07-08 Interlocal Centre Singapore 118523 Tel: +65 6825-1668

For more information, please email us at filtration@eaton.com or visit www.eaton.com/filtration

© 2021 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

