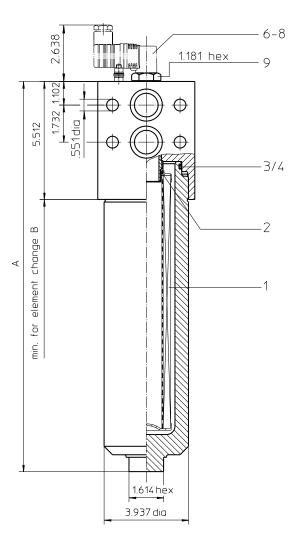

Series EHPF 170-450 4568 PSI


Dimensions:

type	EHPF 170	EHPF 240	EHPF 360	EHPF 450
connection		D	N 28	
A	13.11	15.07	18.22	22.36
В	13.00	14.00	18.00	22.00
weight lbs.	48	53	57	66
volume tank	.18 Gal.	.23 Gal.	.31 Gal.	.42 Gal.

1) Connection for the potential equalization, only for application in the explosive area.

Pressure Filter Series EHPF 170-450 4568 PSI

Description:

Stainless steel-pressure filter series EHPF 170-450 have a working pressure up to 4568 PSI. Pressure peaks can be absorbed with a sufficient safety margin. The EHPF-filters are flanged to the mounting-surface.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to 5 µm_(c).

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirtretaining capacity and a long service life.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI.

Eaton filter are suitable for all petroleum based fluids, HW-emulsions, most synthetic hydraulic fluids and lubrication oils.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

1. Type index:

1.1. Complete filter: (ordering example)

EHPF.	360.	10VG.	HR.	Ε.	Ρ.	VA.	F.	5.	VA.		AE
1	2	3	4	5	6	7	8	9	10	11	12

1 series:

- EHPF = stainless steel-pressure filter, manifold mounted
- 2 nominal size: 170, 240, 360, 450

3 filter material:

80G, 40G, 25G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

- 4 filter element collapse rating:
- 30 = ∆p 435 PSI
 - = Δp 2320 PSI (rupture strength Δp 3625 PSI) HR
- 5 filter element design:
 - Е = single-end open
- 6 sealing material:
 - = Nitrile (NBR) Р
 - V = Viton (FPM)
- 7 filter element specification:
 - = standard
 - VA = stainless steel
 - IS06 = for HFC applications, see sheet-no. 31601
- 8 process connection:
 - = manifold mounted
- 9 process connection size:
- 5 = 1"
- 10 filter housing specification:
 - = stainless steel VA
- 11 internal valve: = without
 - S1 = with by-pass valve ∆p 51 PSI
 - S2 = with by-pass valve Δp 102 PSI
 - R = reversing valve, Q ≤ 55.75 GPM

12 clogging indicator or clogging sensor:

- = without AOR = visual, see sheet-no. 1606
- AOC = visual, see sheet-no. 1606
- = visual-electric, see sheet-no. 1615 AE
- VS5 = electronic, see sheet-no. 1619

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E.	360.	10VG.	HR.	Ε.	Ρ.	VA	
1	2	3	4	5	6	7	

1 series:

01E. = filter element according to company standard

- 2 nominal size: 170, 240, 360, 450
- 3 7 see type index-complete filter

Technical data:

operating temperature: operating medium max. operating pressure: test pressure: process connection: housing material: sealing material: installation position: +14 °F to +212 °F mineral oil, other media on request 4568 PSI 6525 PSI manifold mounted EN10088-1.4571 (316 Ti according to AISI) Nitrile (NBR) or Viton (FPM), other materials on request vertical

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

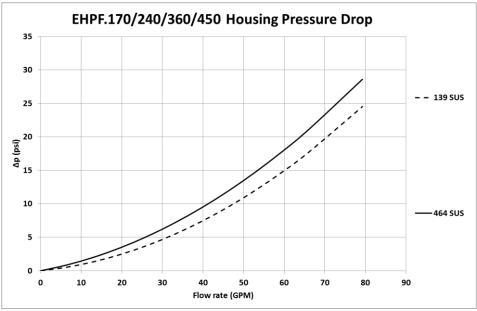
Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

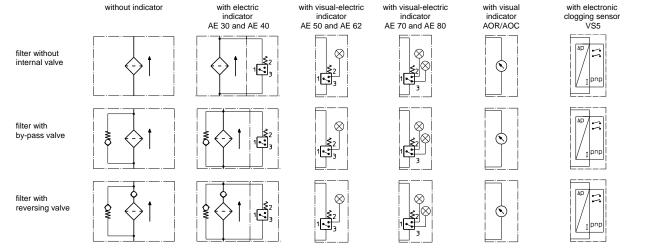
 Δp assembly = Δp housing + Δp element Δp housing = (see $\Delta p = f(Q)$ - characteristics)

$$\Delta p \text{ element (PSI)} = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v (SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$$

For ease of calculation our Filter Selection tool is available online at www.eaton.com/hydraulic-filter-evaluation


Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.


EHPF	VG						G	
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G
170	2.714	1.884	1.206	1.036	0.708	0.0839	0.0783	0.0537
240	2.092	1.452	0.930	0.799	0.546	0.0651	0.0607	0.0416
360	1.530	1.062	0.680	0.584	0.399	0.0475	0.0444	0.0304
450	1.126	0.782	0.500	0.430	0.294	0.0349	0.0326	0.0223

<u>∆p = f(Q) – characteristics according to ISO 3968</u>

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0,876 kg/dm³. The pressure drop changes proportionally to the density.

Symbols:

Spare parts:

item	qty.	designation	dimension			article-no.		
			EHPF 170	EHPF 240	EHPF 360	EHPF 450		
1	1	filter element	01E.170 01E.240 01E.360 01E.450					
2	1	O-ring		34 x 3,5			304338 (NBR)	304730 (FPM)
3	1	O-ring		76 x 4			305599 (NBR)	310291 (FPM)
4	1	support ring	84 x 3,6 x 1,5			312307		
5	2	O-ring		32 x 3			304368 (NBR)	311020 (FPM)
6	1	clogging indicator visual	AOR or AOC			siehe Blat	t-Nr. 1606	
7	1	clogging indicator visual-electric	AE			siehe Blat	t-Nr. 1615	
8	1	clogging sensor electronic	VS5			siehe Blat	t-Nr. 1619	
9	1	screw plug	20913-4			314442		

item 9 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

ISO 2941	Verification of collapse/burst resistance
ISO 2942	Verification of fabrication integrity
ISO 2943	Verification of material compatibility with fluids
ISO 3723	Method for end load test
ISO 3724	Verification of flow fatigue characteristics
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

Greater China

No. 7, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

Asia-Pacific

100G Pasir Panjang Road #07-08 Interlocal Centre Singapore 118523 Tel: +65 6825-1668

For more information, please email us at *filtration*@eaton.com or visit www.eaton.com/filtration

© 2021 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

